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FOREWORD

A series of temperature sections from expendable bathythermographs over
a 4 year period off the Somali and Arabian coasts described in this report
shows the complex eddy structure formed each year during the southwest monsoon.
These eddies may be three to five times the diameter of Gulf Stream rings.
Strong near-surface fronts associated with the boundaries of the larger
eddies are formed.

This report gives an idea of the extreme frontal variability that
occurs seasonally in this region and information about the strong wind
system driving the circulation.

C. H. BASSETT
Captain, USN
Commanding Officer
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1 1N hT UIOh) 1 ( T I .t

A pro(jrjm of XT measure;lents in the nnrtnwe. ttrl ,md equi torii I Indidn
Ocea I I f t 1 IIued f rol tile end of the, southvjwest i-o)o n I c n i -I7 ' tnrouqh
I -)7i. A ",Iries of tefpd erature ect ions hio hbeen . I ul ted wnhi oh, ,
Wi t 1 ti er -uIVejs i? - the arta, oa. 91 yen a ulo idrl k, a:;iouIt off infor;;-itik rI
about t ti re in . Tihe lnowj-range scientifi(. ohjectiw_ y , rive ,e-i to atteipt

an understanding of the circulation characteristics prticularly in the ooncli
Basin and off the Ara hiain coast, i n order to examine the ti-e vdriations and
horizontal scale of the eddy circulation associated with the cormienceient of
the domi nant soutnwest monsoon, the variation during an entire season and also
that from year to year. It is important to know whether certain preferred
modes exist in the current patterns, the decline of the flow upon cessation of
the monsoon winds, the changes in the heat content of the ti xed layer, the
variations in the region of strong upwelling off the Somali and Arabian coasts
and the changes occurring in the near-equatorial dynamic topography as a
result of the Somali circulation.

These studies in the western Indian Ocean are important to the ; avy
because considerable information about the unusually strong horizontal teimpjera-
ture gradients which develop during northern summer off the Sowiali and Arabian
coasts within a relatively short period (two to three month,' for full strength)
has been obtained. The surface currents associated with these qiradients are

on the order of twice those found in the Gulf Streai, and voliwe transports in
the upper 200 m exceed that of the Gulf Stream. Variation in acoustic patterns
should be expected in this area.

This program was set up for monitoring the thermal structure in the
northwestern Indian Ocean by means of ,BT observations from tankers and other
available ships. It is a cooperative effort originated and managed by the
Woods Hole Oceanographic Institution and shared during 1979 b the U. S. -ava
Oceanographic Office. The University of Cape Town, South Africa, has coopero-
ted with and aided the observational program. This study has )een part of
INDEX (Indian Ocean Experiment), a program designed for examining the circula-
tion dynamics by a series of oceanographic studies associated with the First
GARP Global Experiment (FGGE).

2. BACKGROUND AiD RESULTS

A series of temperature sections along the tanker sea lane (figure la' off
the East African and Arabian coasts has allowed the observqtion of the seasonal
development of large eddies which occur during the period of stronnl southwest
monsoon winds in the northwestern Indian Ocean. For five consecutive years
(1975-1979), a large eddy described by Bruce (1963) was formed in the northern
Somali Basin between approximately 4°N and 120 N.

This eddy appears to be the first to form in the region upon commencement

of the southwest monsoon; it is considerably larger and more energetic than
other eddies formed there during the year; and it has been observed to remain
in this location at least three months after cessation of the southwest monsoor.
It is first discernable from sections in late May or early June in the near
surface waters (0-100 m) and continues to intensify until late September or
early October at the end of the southwest monsoon. The fully developed eddy
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is clearly evident ac indicated by the depressed isotherms of the temperature
sections in figure 1. The horizontal dimensions across the prime eddy are 400
to 600 kin with variations occurring during a single monsoon season (Bruce,
1970) as well as yearly differences which will be described here.

An eddy of smaller horizontal dimensions which appears to be associated
with the prime eddy was found each year (1979-1979) off Socotra between 120N
to 150N. During some years such as 1976 and 1979 [also 1970 (Bruce, 1973)] an
eddy was observed south of about 5ON and adjacent to the southern boundary of
the prime eddy and to the east African coast.

Observations during several surveys within the last fifteen years indicate
that the northeastward current flowing alongshore (Somali Current) is clearly
part of the eddy field found each southwest monsoon off the Somali coast
(Swallow and Bruce, 1966; Bruce, 1968, 1973). The current diverges from the
coast turning eastward about 90N to 100 N each year and during some years also
at 3°N to 5°N forming a southern eddy. Farther offshore (550E to 580E), it
turns southward and then back toward the shore. All past measurements known
to the author indicate that during the southwest monsoon, a clockwise "warm"
eddy (prime eddy) of this general description occurs within the Somali Basin.
Pronounced upwelling with surface temperatures as low as 130 C (Warren et al.,
1966) is found in the region where the strong coastal current turns offshore.

The program has utilized ships of opportunity (EXXON tankers) en route
along the sea lane between the Persian Gulf and South Africa. These obtained
a temperature-depth (0-450 m) section with expendable bathythermograph probes
(XBTs) on an average of approximately every three weeks along essentially the
same track. The track location is extremely fortuitous in that it passes
directly through the central region of the eddy field and thus provides an
excellent means of monitoring the growth and decay of the eddies formed during
each southwest monsoon. The measurements were obtained by special observers
who were placed aboard at Cape Town, South Africa, and made a round trip to
the Persian Gulf, thus obtaining two sections per trip. Altogether 55 sections
were completed (figure 2). The closely spaced stations (20-30 km apart)
necessary to observe the small scale features of the temperature structure
essentially require a full time observer who was also needed to maintain good
quality control of the data and record, at each station, wind velocity, ship's
set by currents, surface salinity samples, etc.

With cach of the sections shown in figure 1 (which represents the fully
developed southwest monsoon eddy system) is given a schematic representation
of the circulation pattern of the near-surface water (upper 150 i). This
estimate is aided by previous surveys in this area (Bruce, 1968, 1970) during
which time the structure of the eddies to the east and west of the tanker
track was observed. The complete time sequence showing the changes occurring
in the thermal structure of the eddy field is given in figure 2. In late
March and April no large scale horizontal gradients generally are evident in
the upper thermocline, whereas in the late June - early July sections the
prime eddy is clearly discernible roughly betwepn 5N to 10%. Then during
July and August (the periods of maximum wind strength) the development inten-
sifies with a deepening of the mixed layer in the central regions of the prime
eddy (centered approximately 8ON) and the Socotra eddy (120% to 140 N). By
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December a relayatior of the eddy field is evident. During some years, how-
ever, the priie eddy is still discernible it' the upper layer as late as January
(i.e., January 1976).

/lthough a large eddy is found each year within the northern Somali Basin,
there are some differences from year to year. Probably the most evident is the
foriiation of a soutnern loop or eddy in 1976 and 1979. The pattern at that
time was similar to that found in 1970 (Bruce, 1973). The coastal surface
current turned offshore about 5°N to the south of the prime eddy. 11ormally in
the case of a single large eddy as observed during 1976 and 1977 the strong
upwelling associated with the aivergence of the coastal current from the coast
occurs at approximately 90N to 110N. Wlhen the southern circulation or eddy
forms and becowes f.ell developed, strong upwelling also occurs at 40° to 60N.
Although this circulation is termed an eddy, some of the flow extends south of
the equator and may in fact not all return to the coastal current regime.

Judging from XbT data from 1975 through July 19-79, it appeared that once
the general pattern of circulation becomes established during the monsoon, it
then tends to continue throughout the duration cf the monsoon. For example,
between late Ilay and mid-October 1976 (see figure -2), all eight tanker XT
sections obtained througiout this period indicate that both the southern eddy
and prim-e eddy were present. however, this might not always hold true.
During late August 1979 (fi ure 2), a northward shift in the northern Loundary
of the southern eddy near 5 11 occurred. This shift occurred in the followincg
manner: during the early stages of the developrent of the 1979 southwest
monsoon eddies, a large southern eddy and the northern prire eddy were both
clearly established by June in the Somali Dasin. This circulation resulted in
the current turning offshore and forring a wedge of cold upwelled water in two
locations: 4°N to 50N, and 907 to 100 Nl. The general location and size of the
eddies tended to remain approximately the same through early August. The ESSO
HONOLULU XDT section, 14-18 July 1979 (figure 2), is representative of the
temperature structure along the tanker sea lane. The strong gradients above
150 m depth near 40N occur at the northern edge of the southern eddy. The cold
near-surface water advected offshore by the anticyclonic eddy extends through
the section here. It may be seen that the southern eddy is relatively shallow
whereas the northern prime eddy (40N to 100N) exhibits horizontal temperature
gradients at least to 400-500 m depth. The upwelled cold water also extends
offshore through the section near 10ON. As found in each previous southwest
monsoon during which data in this region have been collected (Bruce, 1979), the
Socotra eddy also occurred in 1979 (lOON to 140 N). Because of the relatively
fresh (35.135.3 0/oo) near-surface water entrained in the system of eddies from
the Somali coastal current, a surface salinity map serves as a remarkably good
method for exanining the circulation pattern. By mid-August the northern front
and cold wedge associatey with the southern eddy began a northward translation
at a rate of 15-30 cm s- . Dy late August the southern eddy apparently had
merged with the northern priwe eddy as indicated by the temperature section
taken 25-31 August 1979 from the ESSO CARRIDBEAD (figure 2) and a map of sur-
face salinity (figure 3) obtained during the survey aboard USNS WILKES. The
satellite imagery of sea surface temperature also indicated this translation
during August. The coalescence of the southern eddy with the northern prime
eddy is sor.ewhat similar to that observed during August and September 1970 by
Bruce (1973), although for 1979 the data was obtained more frequently during
the occurrence.
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Da t a coI lI(,t , t r ,,LL( dic m; AukIust an d d ' I odd l P,
and 7 SII I.,tat IhC :11 J 'A itiun t o olsrvi I o the e ft ot t U southtrll (,dd 1
toe prime or nortllerm edd, ,,i srveyed. Alao a niore detailed study of the
Sodot ra eddy wa L, ta lied todn ts )enn iiade o dat e.

ri !I7' lId L , and I , wrireas a wel I -dteveloped southern eddy was not
evident, stil tter'e, a;ear to te variations in toe near-surface (o-LI) in')
structure that SUjtst tiot soe offshore flow ,,ight occur between 3,Cd and
Al°. For exarip le, along the 19-23 October 1975 section figure 1b) at 4"N to

OA°, there are mrall scale temperature gradients which suggest a weak eastward
flow in tie upper 100 1 m. It seems possible that the returning onshore flow
k2oN to 5°%) of toe prime eddy or northern eddy wight well affect changes in

the alongshore current flow. Sili ilar observations are describned in ldbOtatory
"Cale models for fluidics researci 'Carbonare et a]., 1 -7.J). doall Autiern
eddy was found during toe early stage of the southwest monsoon 1gT7c (Bruce et
a., 19. 0) altnougn it did not appear to attain the size or strori horizontal
grijients occurring during 1 97o or 1 7'l .

Toe time series of sections following tie development of the eddy stru -

ture th-rough toe early stages of toe southwest monsoon (March through June)
indicate tnat tie prime eddy first forms between 5°N to 1O IN in the Somali
Basin, with toe center at approximately 2°,0 N, 530E. The data do not suggest
toat the northern eddy is formed at the eguator and then translates northeast-
ward along the coast as postulated by the numerical models of Cox ()')76), and
Hurlburt and Thompson ( ,h76).

Tie strong signal during the southwest monsoon in the surface dynamic
topograony (7o i to 10°) of the sea surface within the prime eddy is evident
in fijure 4 and to(e complete series in figure 5. The same terperature-salinity
relationsnip for toe Somiali Basin during the southwest iionsoon (a meal, tempera-
ture-salinity curve determined by values obtained from previous surveys
during the southwest lonsoon period) was used for all the determi nations
shown. The density gradients that occur in the Somali eddies, as in tne Gulf
bLreari, are largely a function of temperature. The pronounced downward slope
of the surface dynamic topography to the north in fiqure 4 occurs between S°o:
to 120 N with values on the order of 2 x 1O- 3 dynes g-l (about the same as
f.ard across the Gulf Stream at 36°N). The volume transport of the prime eddy
to toe east offsnore amounts to 3 to 42 x 106 m3 sec - l (0-400 dbar, rel. a0
diar, .. ito a coparable return flow inshore to the south between 40 t to ,ON.
To toe norlrt of toe prim;ie eddy, toe Socotra eddy occurs each of the five
onservation year, with transports on toe order of 9 to 15 x 106 m3 sec - l

Trre temperature sections arid surface dynamic topography show that this eddy
during 1979 (center of eddy along sections is about 12°N) was well developed
from July through October (figures 2 and 5).

The surface temperature (figure 6) and salinity (figure 7) characteristics
of the western Indian Ocean, particularly in the region of the Somali Basin,
ire changed considerably during the southwest monsoon as a result of several
factors: 1) the advection into the basin by the Somali Current of relatively
cool and fresh Southo Equatorial Current water, 2) high evaporation, 3, advec-
ti n of upwelled wator (al ,,relativelv frfh and cool) off the Somali Coast,
4) vertical ixini resultin fr,:,' th very large wind stress at the sea
surface during the ,out..at monoon, and a) horizontal mixinq within the
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both of the Sot ial i current and eluatori al dynamics in the wostern and central
Indian Ocean. As part of the oceanoIraphic participation (:ND[X, Indian Ocean
Experiment) durinq FGG[, the eddy s tructurfe and current ,ys tomn off the Soi;iali
coast was studied during tue ]'-7u, southwest monsoon (May-Septemher) with
particular emphas is on the coimmencing stage of the !ionsoon. Sirite cow. ider-
able data have been made available from the lational (ima tic Center ( NCU ) on
past wind measurementl throughout this region, it is felt that some discussion
of these observations would be worthwhile.

4. WIND DATA

Using the NCC ship observation( from the TDF-11 tapes, Bunker (1976)
prepared a prugrav fur calculating sea surface energy fluxes. From these
determinations the values of wind stress over the western Indian Ocean kindly
were made available by him. Using these values, maps of monthly averages of

and .Y ,ere contoured in order to observw the patterns occurring during the
southwest (May tlrouh September) and northeast (Decenher through February)
i'ons oni .s

The values of Cf in the equation U '  is air density, UI0  is
average wi nd meed a t 10 m or ships anemometer level) were selected by Bunker
(1979, table 2, u'in(, various classes of air-sea temperature differences and
wind speed ranges from the work of several investigators. Monthly averan]es
for the period 1922-1972 were obtained for subdivisions of toe Marsden gquares
as shown in figure 13 which gives the center of gravity of the observation
positions. Tue total number of observations for each subdivision is niven in
table 1. The remoteness of some regions of the Indian Ocean results in d
nu iber of lesser traveled sea lanes as may be seen by comparing the volume of
observations in table 1 with that of the North Atlantic in Bunker (1976,
figure 3). The subdivisions of the Marsden squares have been adjusted in an
attempt to include sufficient rionthly observations to he significant. Averiges
for periods greater than a miionth would be of considerably less value in depict-
iug the relatively rapid seasonal changes occurring during the monsoons.

5. WESTERN INDIAN OCEAN WIND STRESS FIELD

TUe maps of wind stress (figure 14) have been contoured with the same
interval, ' 2 dynes cm- 2 , for all months with -X and ' positive to the east
and north re'iectively. Perhaps the most outstanding characteristic of the
ont] maps is the large difference in magnitude of the wind stress field
between the two monsoons. The southwest monsoon reaches its greatest strength
durinj July and the northeast monsocn during January. In the early stage of
t!,i -southwest monsoon the components become positive by .lay off the Somali
c ,a;t around 50 N to 1O°N with the largest values ( I dyne cm- 2 ) near SON.
This region is where the first evidence of upwelling at the sea surface is
ouserved from the maps of Wyrtki (1971) with near coastal temperatures falling
elow 270C. The June and July averages indicate the rapid development of the
areas of higi positive stress values, particularly off northeast Somali at
t1o ut I O°N to 120N. Jum, averages greater than 2 dynes cm- 2 extend over half

the distance to the Indian coast and meridionally between 50 N to 150 N. During
July areas with over 4 dyner, c1 - 2 occur, and the band encompassing the strong

6
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gradient south of toe region of the maximui stres values extends northeast-

wards from the African coast to about 650[. The general pattern of the

contours is iw iilar for Au, ut and September, however. with a continued

weakening of stress to j).2 dynes c1-2 or less by October.

There are appairently fluctuations of a shorter duration than could be

shown by monthly averages during the build-up of the southwest monsoon wind

field. Schott and Fernandez-Partagas (1980) have found that the wind for May
and June 1979 varies over a period of a few days in both speed and direction.
The variations were evident in three-day averaged ship observations as well as

records from shore stations and cloud-level winds from satellite data.

The first evidence of wind reversal and the connencing of the northeast
monsoon is also indicated off the Somali coast about 6ON to 100N during Novem-

ber. By January at the i xi:num strength of this monsoon values of -I.) dynes

c - L occur, these being along the Somali coast approximately between 0
0 N and

I100N. The wind stress then diminishes by March. April and October. the

months falling between monsoons, have relatively low values over most of the

northwestern Indian Ocean.

6. CURL OF WIND f-TkESS DURING MONSOONS

The increasp of the curl of the wind stress durinq the commencement of the
southwest monsoon starting in May and reaching maximum values in July is shown

in the maps of figures 15, 16, and 17. The curl maps were constructed using

the radients of the wind stress field given in figure 14 with a grid spacing

of 2u for both latitude and longitude.

The most negative values first appear in the Somali Basin (50N to "JN,
530E) by May and increase through July. They tend to lie in a band extending

from the central Somali Basin on toward the northeast to about 650E.

Values during July of -6 x lO-, dynes cm- 3 in the region, 5ON to 100N,
543E to 590E, occur approximately where the thermocline deepens in the central

part of the large Somali anticyclonic eddy observed each southwest monsoon

(kruce, 1968, 1979). There is insufficient data concerning the prevalence and

structure of the eddy field to the northeast of the Somali Basin, lO N to

150N, 6' OE to 650E, where the curl values up to -10 x lO- dynes cm- 3 are

shown for 1,ily, to estimate the probable location of these mid-ocean eddies.
However, there is evidence from the near-surface dynamic topography that they

occur here (Bruce, 1968). Also from Robinson et al (1979) (figures 18 and
19) the depth to the top of the thermocline reaches a maximum during the
southlwest monsoon in the region of large negative curl values and the patterns

of r.ie maps of curl and thermocline depth are somewhat similar.

A region of positive curl to the north of this band is found off the

albian coast (values over 10 x 10-8 dynes cm-") and extends down to the

'-cuthwest just off tie Somali coast to about 40N. The region where the Somali
-urrent turns offshore has been observed to be between about 40 N to 90 N

:'Bruce, 1979) within the area of positive curl. Here upwelling and the upward
vertical velocity reaches a maximum in the near surface water (calculated by
Swallow and Bruce (1966) to be 7 x l0- 3 cm sec-1 while the thickness of the
mixed layer decroases.

a
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Uuri ng the period of ' !Xi1'1Li t 'ntrLn of the nortrrea t i:ionoon in January
tne values of curl ire a 1'ut',, nt iii],' les than thfise of Jui/. Over luch of
the Somali Basin the curl -ec,2omes po,itiwe (figur ?0) up.1 to ) x 10- ' d/nes
cm 3 with a sm 11 I rea acout I " j u_,t off tne S( .dli c(oast wnich i. 2 Y, 10-:
dynes c- 3  In the regimn to the north of the cor 'tour of zero curl ne twee(
the Somal i east coast and tile Indian west coast (which ha" positive curl
during the southwest monoon), the curl durinq the northeast mIonsoon hecous
negative. A similar reversil of sign occurs to the soutr) of tne zero contoir.
AltOOLugh in general there is a cnange of sign of the curl between -onsoons,
tohe magnitude of the values in most rogions is considerably lesc, during the
northeast monsoon.

7. TOTAL IERIDI(INAL TRANSPORT

From the uly and January values of curl (represeting the maxiwumi vol ues
for each :ions )on) the meridional mass transport (Sverdrup trans port) I, - -

curl * can be determined (Storimel , 1965). My is the sum of the geostro~nic
a:nd Ekman transports. Values were summed over areas of 2o latitude and longi-
tude (figures 21 and 22) from the eastern boundary (transport function consi-
dered zero here,), i.e., the west coast of India and Sri Lanka and from °0°E
for the region south of Sri Lanka down to 20 N, toward the west approaching the
Somali and Arabian .'ots.

In the Somali Basin during July the transport is greater than 30 x 1 lO2 g
sec - l and in two regions near 60 N and 20N greater than 40 x 1012 q sec -l to
tne south. For continuit/ this would require a northward current of equal
magnitude along the Somali coast and off the island of Socotra (120 'j, 540 E).
The transport around 60 N is in agreement with direct measurements here which
amount to 4.] to 50 x 1)12 g sec-Y (Swallow and Bruce, 1966) (figure 22),
however, a ore northerly section (up to 8o 40'N) of direct measurements where
the current turns offshore during the same cruise had a transport over 60 x
I 2 q sec -Y it was also found that in the North Atlantic the computations
of transport failed to account for the large observed transports in the Gulf
Stream after it leaves the coast (Leetiiaa and Bunker. 1978). The Somali
Basin, as in this area of the Atlantic, has a strongj eddy field which in part
might account for the gireater transport. The northwestern Indian Ocean is
subjected to large seasonal changes in wind stress, particularly with the
onset and build-up of the southwest ilonsoon, and it is not clear whether the
mean stress curl for a period as short as a month would account for the trans-
port which is a function of both barotropic and baroclinic processes (Hantel,
1971). However, once the onset of the monsoons has occurred, the wind direc-
tion tends to be relatively steady compared to most ocean regions, thus
conceivably a shorter response time would be required in this part of the
Indian Ocean as suggested by the agreement with direct current observations.
A lag of the order of magnitude of a month between the build-up in the wind
stress field (greatest in July) and the oceanic response is indicated in
figures 6 and 7 where the greatest monthly mean depths of the top of the
thermocline are attained during August (Robinson et al., 1979).

The fact that there are two areas in figure 21 with transports greater than
40 x 1012 g sec "I suggests the formation of two eddies. Such a circulation has
been observed each southwest monsoon during toe period ]175-1979 (Bruce, 1979):
a large eddy off the Somali coast and a somewhat smaller one to the east of

9



Socotra. Note that the mass transport calculations suggest that the Socotra
eddy is the larger. Observations also show that during certain years (as 1970,
1976, 1979) (Bruce, 1973, 1979; Brown et al., 1980; Du ing et al., 1980) a
portion of the Somali current may turn offshore about 40N to 60N forming a
separate near-equatorial eddy or loop. There is no indication of this mode of
circulation in the mass transport map.

To the east of the Somali Basin observations from earlier hydrographic
surveys (sections along 5011 and lOON) (Bruce, 1968) give evidence for the
occurrence of other eddies formed during the southwest monsoon. The geostro-
phic velocity and transport across these sections are shown in figures 23, 24,
25, and 26. Drawing from these data and previous studies of the southwest
monsoon circulation (Bruce, l0YC,%; Duing, 1970) a schematic drawing indicating a
possible circulation pattern of the eddy field which occurs is given in figure
27.

Off the Arabian coast during July (figure 21) a southward transport would
be required. From nydrographic observations (Bruce, 1968) it is not clear that
such might be the case. The section along 150N during early August 1963 (Bruce,
1968) indicates a northward geostrophic near-surface current along the coast
with a transport amounting to approximately 12 x 1012 g sec- 1 . Pilot charts
and the Dutch atlas (1952) show a northward current along the coast.

During January the Sverdrup transport (figure 22) values are relatively
weak compared with that of July. A southward transport along the Somali coast
south of about SON amounting to greater than 10 x 1012 g-1 sec would be re-
quired. This flow is in good agreement with the pilot charts (H.O. Pub. 566)
which show southward coastal currents ranging up to 125 cm sec - . The meri-
dional geostrophic transport across a 50N section just after the northeast
monsoon (figure 28) gives relatively low values compared with the transports
during the southwest monsoon (figure 24) as well as indicating a small north-
ward transport off the Somali coast.

3. CONCLUSIONS

From the evidence on hand to date, it appears that both the northern (or
"prime") eddy in the Somali Basin and the eddy east of Socotra are probably
generated each southwest monsoon. These eddies have been observed for five

consecutive years (1975 through 1979) by XBT temperature sections along the
tanker sea lane. They have also been present during all known earlier surveys
(Bruce, 1979). Ouring some years (1970, 1976, 1979) the Somali current has
been found to turn offshore between about 40 N to 60 N forming a southern loop or
eddy. When this circulation pattern is established, a region of cold upwelled
water occurs both at the location where the northern eddy turns offshore
(approximately 3ON to lOON) and where the southern turnoff is observed (approxi-
i.ately 40N to 6ON) along the coast. During late August and early September
,juring 1970 and 1979 the southern eddy was observed to flow into and coalesce
w th the northern one.

During the southwest monsoon the strong signal in the sea surface dynamic
topography of the northern eddy develops each yc.r. The slope on the northern
edge of the.eddy (0141 to 1?ON) amounts to about 2 x 10 - 3 dynes g-l (comparable

10



to the Gulf Stream at 360 N). The volume transport offshore during the south-
west monsoon can reach 38 to 42 x 106 m3 sec -I (0-400 dbar, rel. 400 dbar).

In the mixed layer (upper 100 m) along the XLT section (2ON to 120N) heat
is gained in late Spring until the commencement of the southwest monsoon, after
which a rapid heat loss occurs. At the same time the loss takes place in the
mixed layer, however, there is a comparable gain in heat in the 100 to 200 m
layer caused by a deepening of the isotherms, thus the heat loss for 0 to 200 m
appears to be small, if any, during the southwest monsoon. After the southwest
monsoon at the end of the year both layers show a heat loss.

The surface dynamic topography of western Indian Ocean equatorial water
(480E to 500E) shows strong seasonal signals: an increase in dynamic height
during each interim between monsoons (at the times the Wyrtkie jet should
occur) and a decrease during the nurthwest and southwest monsoons.

The patterns of the monthly dverages of the wind stress show the magnitude
of values during the southwest monsoon (July, off Socotra, , 4 dynes cm-2 ) are
large relative to that of the northeast monsoon (January, off northern Somalia,
-1 dynes cm-2 ). Sverdrup mass transport determin d from yalues of curl of the
wind stress shows agreement (values up to 40 x 10'' g sec to the north) with
observations during the southwest monsoon off the Somali coast (60 N). During
the northeast monsoon the Sverdrup transport requires a southward flow along
the Somali coast south of about 50N (up to 10 x 1012 g-I sec).

11
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Figure 3. Surface salinity (o/00), 18 August - 3 September 1979, from USNS WILKES.

70

-A-



STA TON NUMBER
8 10 15 20 25 30 35 40 45 50' 4 T f { T T t r IC '( C I I C CI I C C C C I I I I C I 1 I - I 1 !
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~108 " "" "-
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2°N 40 60 80 0°  120 40 16°N
L AT/LDE

Figure 4. Sea surface dynamic height relative to 400 dbar during the southwest monsoons 1975, 1976,

and 1977 constructed from XBT stations along the tanker sea lane (Figure la). For each year

the strong signal of the prime eddy occurs from 80N to 1 00N with a deep trough to the north

(11 °N to 1 2ON) between it and the Socotra eddy 1 20N to 1 40N, Mean temperature-salinity

relationship determined from previous data in this region (same temperature-salinity distribution

used for all stations) was used with XBT temperatures to determine the specific volume values

needed to produce these curves.
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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Figure 14. (cont.)
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157

" - i , - ... . .... ..... . . .... . .. . . . .. .... .. . . _ . . . ..L . . .'- . .



20°N " AY -7

curl in . \
i10-8 dynes crn-3

100 
-

-. ~~ I I I I

400 500 60°E

Figura 15. Curl of the wind stress for May in 10-8 dynes cm-3 from monthly averages (Figure 14)
off Somali and Arabian coasts during commencing stage of southwest monsoon.
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Figure 16. Cud of the wind stress for June in 10-8 dynes cm-3 from monthly averages (Figure 14)

off Somali and Arabian coasts.
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Figure 17. Curl of the wind stress for July in 10 8 dynes CM 3 from monthly averages (Figure 14)

in the western Indian Ocean during the maximum of the southwest monsoon.
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Figure 18. July mean depths (in) to the top of the therrnocline (after Robinson et a-I., 1979).
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Figure 19. August mean depth (in) to the top of the thermocline (after Robinson et al., 1979).
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Figure 20. Curl of the wind stress for January in 10-8 dynesC c-3 from monthly averages (Figure 14)

in the western Indian Ocean during the maximum of the northeast monsoon.
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Figure 21. Mean July Sverdrup mass transport in 1012 g sec-1, positive to north.
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Figure 22. Mean January Sverdrup mass transport in 1012 g sec-1, positive to the north.
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Figure 24. Geostrophic volume transport, 0 - 1000 Obar relative to 1 Ct ?~ r, across 5ON section
(Figure 23) in the Indian Ocean. Area of columns rer- 31it. ;D ort, value for each
group in 106 M3 sec-1.
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Figure 27. Schematic diagram giving probable circulation pattern of anticyclonic eddies formed

during the southwest monsoon in the western Indian Ocean.
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DISTRIBUTION LIST

Total
Activity No. of Copies.

CNO(OP 095, OP 0952) 2
COMNAVOCEANCOM I
UNSECDEF (R&E) 1
NAVWARCOL 1
CNR (Code 480) 1
NISC 1
NORDA 1
NRL 1
NUSC (Newport) 1
NUSC (New London) I
NAVPGSCOL 1
NOS C 1
ASN (R&D)I
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